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The Ponzano—Regge Model

Annalisa Marzuoli

Dipartimento di Matematica “F. Casorati”, Universita degli Studi di Pavia
via Ferrata 5, 27100 Pavia-I
INFN, Sezione di Pavia, via Bassi 6, 27100 Pavia-I
B-mail; annalise.morzuoli@unipr.it

We present an overview of the role of the (Racah—)Wigner 6 symbol as the basic building
block underlying such different fields as state sum models for quantum geometry, topolog-
ical quantum field theory, statistical lattice models and quantum computing. Focusing on
the geometric side, the results found in the geminal paper Semiclassicol Limil of Racah
Coefficients were recognized only many years later as a fundamental breakthrough for 3D
diseretized quantuin gravity and will be addressed in some details, Selected — and by no
means complete — lists of further applications and interconnections are included.

1. Introduction

Recall first that the (re)coupling theory of many SU(2) angular momenta — framed math-
ematically in the structure of the Racah—Wigaer tensor algebra — is the most exhaustive
formalism in dealing with interacting many-angular momenta quantum systems.b»? It suf-
fices here to mention the basic work of Wigner, Racah, Fano and others (see the collection
of reprints® and the Racah memorial volume quoted in Ref. 4). As such it has been over
the years a common tool in advanced applications in atomic and molecular physics, nuclear
physics as well as in mathematical physics. In the last three decades there has been a desp
interest in applying (extensions of) such notions and techniques to the branch of theoretical
physics known as topological quantum field theory, as well as in related discretized mod-
ols for three-dimensional quantum gravity. More recently the same techniques have been
employed for establishing a new framework for quantum computing, the so-called “spin
network” quantum simulator.”

In section 2 the 65 is looked at as a geometric tetrahedron — emerging in the Ponzano—
Regge view — the basic magic brick in constructing three-dimensional quantum geometries
of the Regge type, while in section 3 a fow remarks on some developments and connection
with other fields are briefly reported. Standard definitions and results on the Wigner 6]
symbol and its asymptotics are collected in Appendices.
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"This contribution is largely based on the review paper.8

2. The 6j symbol and 3D quantum gravity

From a historical viewpoint the Ponzano-Regge asymptotic formula for the 67 symbol,*
reproduced in (14) of Appendix A.l, together with the seminal paper” in which Regge
calculus was founded, are no doubt at the basis of all discretized approaches to general
relativily, both at the classical and at the quantum level.

In Regge's approach the edge lengths of a triangulated spacetime are taken as discrete
counterparts of the metric and a Regge spacetime is a piecewise linear (PL} manifold of
dimension D dissected into simplices, namely triangles in D = 2, tetrahedra in D = 3, 4-
simplices in D = 4 and so on. Inside each simplex sither an Euclidean or a Minkowskian met-
ric can be assigned: accordingly, PL: manifolds obtained by gluing together D-dimensional
simplices acquire an overall PI, metric of Riemannian or Lorentzian signature,®
Consider a particular triangulation 77 (£) — MP, where M7 is a closed, locally Euclidean
manifold of fixed topology and £ denotes collectively the (finite) set of edge lengths of the

simplices in 72. The Regge action is given explicitly by (units are chosen such that the
Newton constant G is equal to 1)

S(TP () =57 = 3 Vol B (g)) e, (1)
where the sum is over (D - 2)-dimensional simplices ; € T2 {called hinges or “bones”),
VoltP—2) (0;) are their (D — 2)-dimensional volumes expressed in terms of the edge lengths
and e; represent the deficit angles at o;. The latter are defined, for each i, 88 27 — . Oy,
where 8y are the dihedral angles between pairs of (D—1)-simplices meeting at o; and labeled
by some k. Thus a positive [negative or null] value of the deficit angle ¢; corresponds to
a positive {negative or null] curvature to be assigned to the bone i, detected for instance
by moving a D-vector along a closed path around the bone i and measuring the angle of
rotation. Even such a sketchy description of Regge geometry should make it clear that a
discretized spacetime is flat (zero curvature) inside each D-simplex, while the curvature is
concentrated at the bones which represent singular subspaces. It can be proven that (under
suitable technical conditions) the limit of the Regge action (1) when the edge lengths become
smaller and smaller gives the usual Einstein—Hilbert action for a smooth spacetime. Regge
equations -— the discretized analog of vacuum Einstein’s field equations — can be derived
from the clagsical action by varying it with respect to the dynamical variables, i.e. the set
{£} of edge lengths of 77 (£), according to Hamilton principle of classical field theory (refer
to® for a bibliography and brief review on Regge calculus from its beginning up to the 1990’s
and to the contribution by Ruth M. Williams in the present volume),

8Finstein’s General Relativity corresponds to the physically significant case of a four-dimensional
spacetime endowed with a smooth Lorentzian metric. However, models formulated in non-physical
dimensions such as D = 2,3 turn out to be highly non-trivial and very useful in a variety of
applications, ranging from conformal field theories and associated statistical models in D = 2 to
the study of geometric topology of 3-manifolds. Moreover, the most commonly used quantization
procedure of such theories hag a chance of being well-defined only when the underlying geometry
is (locally) Euclidean, see further remarks below,

i

Rerall that Regge calculus gave rise in the early 1980’s .to a novel approach to guantiza-
tion of general relativity known as simplicial quantum gravity (sef—: Refs. 8—1? and refell?ences
therein), The quantization procedure most commonly ad‘opted is the ]'El?clldean‘ pat 1?suml
approach, namely a discretized version of Feynmafn’s pat.h—mtegral r,lescmbmg ?-dlmensm;:
Regge geometries undergoing “quantum fluctuations” (.111 Wheeler’s worclis a ?Em (\)ﬂ\;.erh i 1;
tories” ! formalized for gravity in the so-called Hawking-Hartle prescription ). ‘ it Ot}ll
entering into technical details, the discretized path—sunr.l approach turns out.to be ve;iy usefi
in addressing a mumber of conceptual open questions in tbe approach relying on the E.eom(i
etry of smooth spacetimes, although the most significant 1mpro‘ver.nents have beer{ ac 1@ye
for. the DD = 3 case, which we are going to address in some detml? 1{1 the rest of thlS'SECtEEIli

Coming to the interpretation of the Ponzano-Regge asymptotic f01‘"m1‘1]a folr theffi ] sy'm c;
given in (14) of Appendix A.l, we realize that it represents the sen.nclassmal unctl.oria Ci
namely the semiclassical limit of a path-sum over all quanfcum fluctuations, to be assfomatlel
with the simplest three-dimensional spacetime, an Euclidean tetrahedron T In. ac:; ! Ee
{positive frequency part of) argument in the exponential reprc.)duces the Regge act(lgri 5 )
for T since in the present case (0—2) simplices are one-dimf—msmnal {edges) and Vol ; ((:;;)
in (1) are looked at as the associated edge lengths, see the 1I.1tr0ducto'ry part ‘.Of Apfpen ix d

More in general, we denote by 7°{(j) = M® a partmul'ar trlangullatl?n of a close
three-dimensional Regge manifold M2 (of fixed topology) obtained by ansss1gx11ngr :S'U (2}1 S}Zm
variables {7} to the edges of T4, The assignment st satisf:y a nL;mper of conditions, better
Ulustrated if we introduce the state functional associated with.7°(j), namely

Nl NE . . .
) JrJ2 J
ZIT3(5) = M3 L] = ALYy~ E(_l)%wﬂ Bl—;[l = {Ji jz jz}B @

where Ny, N1, N3 are the number of vertices, edges and te"crahejdra i‘n T35}, A(L) = 4.‘L3 / SC:f
(L is a fixed length and C an arbitrary constant), wa = (254 + 1) are tgée d;i1mens101?,.sf o
irreducible representations of SU(2) which weigh the edges, ¢ = (—1) . p=178 Tamd {...t]f
are 6j symbols to be associated with the tetrahedra of 'the trla.,ngulatlon. Flr%aily, E
Ponzano—Regge state sum is obtained by summing over triangulations corresponding to &
assignments of spin variables {j} bounded by the cut-off L

Zenl M) = Jim, 30 AT 2 ML, (3)

Iz

where the cut-off is formally removed by taking the limit in front of the sum.

3. Remarks and outcomes

Tt is impossible to review in short, or even mention, the huge number .of imp11~:ea,‘51n:)1z1si],l
outcomes and further improvements of the Ponzano-Regge state SU}m funct.lona,l (‘3}, a8 C"lwe
as its deep and somehow surprising relationships with so’many dlfferent' issues ‘1ntm(; te;ir;
theoretical physics and in pure mathematics. We are going to pres.ent .m the res ‘01
section a limited number of items and a few references, whose selection is made mainky on
the basis of the longstanding interest in spin networks of the author and her collaborators.
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it is worth to str.ess hmzrs\ier the crucial role of this model in the so-called Loop approach
o quantum gravity, see’®'4 and references therein, and also the older review paper'?®)

(a) As il.rnplicitly stated in,® the state sum Zpp [M?®] is a topological invariant of th
rrllanlfold .MS, owing to the fact that its value is actually independent of the :
tlcular.trlangulation, namely does not change under suitable combinatorial t‘par_
formfaJtlons.. Remarkably, these “moves” are expressed algebraically in terms olfatIi.ls -
rela,tlo.ns given in Appendix A.2, namely the Biedenharn-Elliott identity (17) — e
resn.antntlg the moves (2 tetrahedra) > (3 tetrahedra) — and of both the Biedenh g
Elliot} 1dentit3lr and the orthogonality conditions (18) for 67 symbols, which reprezlt;l:l;
th:)sbar‘?rcentmc. move together its inverse, namely (1 tetrahedra) « (4 tetrohedra)

(b) In'® a rq'aguiarlzed” version of (3) — based on representation theory of a quam:ur'n

% deformation of the group St/ (2) — was proposed and shown to be a well-defi

quantum tnvariont for closed 3-manifolds.P e e

Its expression reads

Ny Ng
Z’ 3. = -y j ] i
mista =S [l I 23] g
{7} A=l b1 17475 08l

| Where.the summation is over all {j} labeling highest welght irreducible re
: senta;t‘lons- of SU2)q (¢ = exp{2mi/r}, with {j = 0,1/2,1...,r — 1), w Pr‘i‘
(—1)%4[2j4 + 1] where [}, denote a quantum integer, w,: 21:/(q — q“,l)zAanE
\. | represents here the 67 symbol whose entries are the angular moment
Jist=1,...,6 associated with tetrahedron B. Tf the deformation paramet i .
to ] one gets Zry [M* 1] = Zpg [M?],. T
It is worth noting that the g-Racah polynomial — associated with the -6 b
| Z procec'lure that matches with what can be done in the SU(2) case, seeq(lg) ir}I
! ppendix A.2 — stands at the top of Askey’s q-hierarchy collecting ortho, 1
g-polynomials of one discrete or continuous variable. On the other hand thegoc?' .
Cc)?ver}; Ef the .Tura,ev“Viro invariant has provided major developments in t};e bra.n::Sl;
Se;;i . ematics known as geometric topology.1® It is still a very active field of re-

(c) rIl'he TuraeY—ViIo or Ponzano-Regge state sums can be generalized in many dir
1]101’18.. For instance, they can be extended to simplicial 3-manifold endcwvedyw'lt]f‘fC~
two-dimensional boundary,'” to D-manifolds’® (giving rise to topological in 1 ta
related to suitable discretized topological quantum feld theory of the Sch Varl: e
and to not semi-simple Lie groups, just to mention a few. TR

(d) The fact that the Turaev-Viro state sum is & topological invariant of the underlyi
(clc.)sed) J~manifold reflects a crucial physical property of gravity in dimens ymg
which makes it different from the D = 4 case. Loosely speaking, the 1'avitatl'on 1
field floes not possess local degrees of freedom in D = 3, and tl;ms argl u {lzf'}naél
_ functional can depend only on global features of the manifoald encoded intscr) %SE:)I;;:ZH

The adjective quantum refers her # ions” i-si i

the Russian School of theoretical p?ul;sii(; irfl iirrﬁ}z%?ﬁn gffnileelzlgEﬁnw]?ilfhlifveg;sluizzflzl (Ellfi(;ldgutcl?;io?g

From ¢ (i i int { iro i
funzilmﬁ:l mizsnt:lematlcﬁa,l'\rlewpomt the Turaev—Viro invariant, unlike the Ponzano-Regge state sum
, ways finite and has been evaluated explicitly for some classes of 3-manifolds
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topology. Actually the invariant (4) can be shown to be equal to the square of
the modulus of the Witten-Reshetikhin—Turaev invariant, which in turn represents
a quantum path-integral of an SU(2) Chern-Simons topological field theory —
whose classical action can be shown to be equivalent to Einstein—Hilbert action!® —
written for a closed oriented manifold M3.20:21 Then there exists a correspondence

Zoy M?q) +— | Zwrr M3 K], {(5)

where the level k& of the Chern—Simons functional is related to the deformation
parameter g of the quantum group.

Despite the “topological” nature of the Tursev-Viro (Ponzano-Regge) state sum and
Witten-Reshetikhin-Turaev functionals in the case of closed 3-manifolds, whenever a 20-
dimensional boundary occurs in M?, giving rise to a pair (MS, %), where i is an oriented
surface {or possibly the disjoint union of a finite number of surfaces}, things change radically.
For instance, if we add a boundary to the manifold in Witten-Reshetikhin—Turaev quantum
functional, the theory mduced on ¥ is a Wess—Zumino-Witten (WZW)-type conformal field
theory (CFT),'” endowed with non-trivial quansum degrees of freedom. In particular, the
frameworks outlined above can be exploit to estabiish a direct correspondence between 2D
Regge triangulations and punctured Riemann surfaces, thus providing a novel characteri-
zation of the WZW model on triangulated surfaces on any genus?? at a fixed level k. We
canmot enter here into many technical details on developments on this topic, and refer to the
monograph® for an upgraded view on the geometry of polytopes_and their moduli spaces.

(e) In?* a (2 + 1)-dimensional decomposition of Euclidean gravity (which takes into
account the correspondence {5)) is shown to be equivalent, under mild topological
agsumptions, to a Gaussian 2/ fermionic sysiem, whose partition function takes
into account the underlying 3D topology. More precisely, the partition function for
free fermions propagating along “knotted loops” inside a three-dimensional sphere
corresponds to a 3D Ising model on so-called knot-graph lattices. On the other
hand, the formal expression of the 3D Ising partition function for a dimer covering
of the underlying graph lattice can be shown to coincide with the permanent of the
generalized incidence matrix of the lattice.2526 Recall first that the permanent of

an n X n matrix A is given by

i
perld] = Y [T aiote (6)

oSy i=1
where @ ,(;) are minors of the matrix, o{¢) is a permutation of the index ¢ =
1,2,...,n and Sy, is the symmetric group on n elements. A graph lattice & as-

sociated with a fixed orientable surfaces T of genus g embedded in 5% may be
constructed by resorting to the so-called surgery link-presentation. Then the inci-
dence matrix of such piecewise linear graph with, say, n vertices, is defined as an
wx n matrix A = (ay;) with entries in (1,0) according o whether vertices 4,7 are
connected by an edge or not. Finally, the Ising partition function turns out to be a
weighted sum — over all possible configurations of knot-graph lattices — of suitable
determinants of generalized forms of the incidence matrices which take into account
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the topology of the underlying manifold. We skip however other technical details

and refer t0°72® for a discussion of algorithmic questions related in turn with item
{f) below.

Note finaily that the deep relationship between 3.0 quantum field theories that share a topo-
logical nature and (solvable) lattice models in 21, sketched in the last item by resorting to
a specific example, was indeed predicted in the pioneering paper by E. Witter.2? Not so
surprisingly, the basic quantum functional that realizes this connection was identified there
with the ezpectation velue of a certain tetrahedral configuration of braided Wilson lines,
where Wilson lines are quantum observables associated with particle trajectories that in
general look like sheafs of braided strands propagating from a surface ¥ to another Do,
both embedded in a 377 background.

(f) The model for universal quantum computation proposed in Ref. 5, the spin network
simulator, is based on the (re}coupling theory of SU(2) angular momenta as formu-
lated in the basic textsh? on the quantum theory of angular momentum and the
Racah-Wigner algebra respectively. At the first glance the spin network simulator
can be thought of as a non-Boolean generalization of the Boolean guantum circuit
model®®® with finite-dimensional, binary coupled computational Hilbert spaces as-
sociated with N mutually commuting angular momentum operators and unitary
gates expressed in terms of:

i} recoupling coeflicients (3nj symbols) between inequivalent binary coupling
schemes of N = (n + 1) SU(2)-angular momentum variables (j-gates);
ii) Wigner rotations in the eigenspace of the total angular momentum J (M-gates).

The spin network simulator is actually the discretized counterpart of the so-called topo-
logical approach to quantum computing developed in Ref. 31 (based, by the way, on the
Witten—Reshetikhin-Turaev approach quoted in item (d)).

The role of the model in quantum circuit theory is addressed in Ref. 32.

A few years ago, in collaboration with S. Garnerone and M. Rasetii, we have developed,
by resorting to g-deformed quantum automata, a new approach to dealing with classes of
algorithmic problems that classically admit only exponential time algorithms. The problems
in question arise in the physical context of 31 topological quantum field theories discussed
above in the light of the fundamental result relating a topological invariant of knots, the
Jones polynomial,®® with a quantum observable given by the vacuum expectation value of
a Wilson loop operator® associated with closed knotted curves in the Witten—Reshetikhin—
Turaev background model,

Without entering into technical details, efficient (polynomial time) quantum algorithms for
approximafting (with an error that can be made as small as desired) generalizations of Jones
polynomial have been found in,* 3% while the case of topological invariants of 3-manifolds

“Recall that this scheme is the quantum version of the classical Boolean circuit in which strings
of the basic binary alphabet {0, 1) are replaced by coliections of qubits, namely quantum states in

(C*Y®Y and the gates are unitary transformations that can be expressed, similarly to what happens

in the classical case, as suitable sequences of slementary gates agssociated with the Boolean logic
operations and, or, not. ’
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has been addressed in.37 The relevance in having solved this kind of problems stems from the

fact that an approximation of the Jones polynomial is sufficient to simulate any polynomial

quantum computation.®®

Appendix A: the Wigner 6j symbol and its symmetries

Gliven three angular momentum operators J1, Ja, J3 — associated with three kinematically

independent quantum systems — the Wigner-coupled Hilbert space of the composite system

is an eigenstate of the total angular momentum
Ji+ I+ I3 =4d (N

and of its projection J, along the quantization axis. The degeneracy can be completely
removed by considering binary coupling schemes such as (§1 + J2) + I3 and Iy + (T2 + JTs),
and by introducing intermediate angular momentum operators defined by

(I + J2) =J195 Ji2 +Ja=13 (8}

and
(Jo + Jg) =Jag; J1 A+ Joz =1, (9)

respectively. In Dirac notation the simultaneous eigenspaces of the two complete sets of
commuting operators are spanned by basis vectors

|f1jzdizda; Jmy and |j1dadadas; Jm), (10)

where 71, j2, j3 denote eigenvalues of the corresponding operators, 4 is the eigenvalue of J
and m is the total magnetic quantum number with range —j < m < 7 in integer gteps. No.te
that 1, jay 7 Tun over {0, %, 1,£,2,... } (labels of SU(2) irreducible representa,tz.ons), W'h1le
|51 — j2| < jiz < Jj1+j2 and jo—J3| SJes S Jat s (all quantum numbers are in A units).

The Wigner 67 symbol expresses the transformation between the two schemes (8) and

(9), namely
J1 je J1z

i }|j1j2j3j23; jmy (11)
Js 3 J23

: . . 1/2
\jigodiada; dm) = > _ (212 -+ 1)(2d23 + 1)] / {
Jaz
apart from a phase factor.d Tt follows that the quantum mechanical probability

e
P = [(2j12 -+ 1){2jas + 1)] {g; sz ;;z} "

represents the probability that a system prepared in a state of the coupling scheme (8),
where 41, j2, 73, j12, j have definite magnitudes, will be measured to be in a state of the

coupling scheme (9).

d Actually this expression should contain the Racah W-coefficient W ( Jijafa; iz Fas) which differs
from the 67 by the factor (=) 7232+ Recall that (2j12 -+ 1) and (2jzs + 1) are the dimensions
of the representations labeled by j12 and jas, respectively. ‘
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The 67 symbol may be written as sums of products of four Clebsch-Gordan coefficients
or their symmetric counterparts, the Wigner 37 symbols. The relations between 65 and 35
gymbols are given explicitly by (see e.g. Ref. 39)

abe afab ¢ ae f d bf\fdee )

{d e f} =2 (a B “’r) (a ¢ w) (*5 8 fp) (5 — 7) (%
where @ = d +e+ f + ¢ - ¢+ . Here Latin letters stand for j-type labels (integer
or half-integers non-negative numbers) while Greek letters denote the associated magnetic
quantum numbers (each varying in integer steps between —j and 7, 7 € {a,b,c,d,e, f}).
The sum is over all possible values of o, 8, v, 4, €, ¢ with only three summation indices
being independent.
On the basis of the above decomposition it can be shown that the 65 symbol is invariant
under any permutation of its columns or under interchange the upper and lower arguments
in each of any two columns. These algebraic relations involve 3! x4 = 24 different 67 with the
same value and are referred to as clessical symmetries as opposite to Regge symmetries to be
discussed in A.2. On the geometric side the classical symmetries of the 65 symbol encode the
tetrahedral symmetry since each 37 {(or Clebsch-Gordan) coefficient vanishes unless its j-type
entries safisfy the triangular conditions, namely |b — ¢ < a < b+ ¢, ete. This suggests that
each of the four 35’s in (13) can be be agsociated with either a 3-valent vertex or a triangle.
Here we adopt the Wigner-Ponzano-Regge three-dimensional picture used in Ref. 4, rather
than Yutsis’ dual representation as a complete graph on four vertices.’® Accordingly, the
67 can be thought of as a real solid tetrahedron T with edge lengths £; = a - %,Ez =b+ %,
voinkg = f % in % units® and triangular faces associated with the triads {(abe), (cef),
{dbf), (dec). This implies in particular that the quantities ¢ =a+b+¢, g =a+ e+ f,
g3 =b+d+ f, @ = c+d+ e (sums of the edge lengths of each face), py = e +b-+d+e,
pr=atct+d+f,ps=b+ctet fareall integer with pr, > g (R =1,2,3, k = 1,2,3,4).
The conditions addressed so far are in general sufficient to guarantee the existence of a
non-vanishing 67 symbol, but they are not enough to ensure the existence of a geometric
tetrahedron 7' living in Euclidean 3-space with the given edges. More precisely, T exists in
this sense if (and only 4f, see the discussion in the introduction of Ref. 4) its square volume
V{T? = V?, evaluated by means of the Cayley-Menger determinant, is positive.

A.1 The Ponzuno—-Regge asymptotic formula

The Ponzano-Regge asymptotic formula for the 8j symbol reads?

8
abd 1 T
{c f e} Sy T {% (ml rbet 4)} (14)
where the limit is taken for all entries 3> 1 (recall that i = 1) and 4, = j. + 1/2 with
{4r} ={a,b,e,d,e, f}. V is the Euclidean volume of the tetrahedron 7' and 6, is the angle

between the outer normals to the faces which share the edge £,. From a quantum mechanical
viewpoint, this above probability amplitude has the form of a semiciassical (wave) function

®The %wshift is shown to be crucial in the analysis developed in:* for high quantum numbers the
length [§(5 + 1)]*? of an angular momenturn vector is closer to j + % in the semiclassical limit.
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since the factor 1/+/247V is slowly varying with respect _1:0 tht? spin vari%bles ;\rhl'le ‘the e}?ﬂ;
nential is & rapidly osciilating dynamical phase. Such' 1‘<md of a,symp:u}oz?lg bze a,viol1 ;5011‘1/1 o
with Wigner’s semiclassical estimate for the proba1?111ty, namely { % fe Nl- / tz Fe, o
be compared with the quantum probability given 1ln (12). Moreovex,fackcl:orc ing ntialyiIl
man’s path sum interpretation of quantum mechan%cs, the argument ol § e ;XPOHE.S o)
(14) must represent a classical action, and indeed it can be read as Y, ;?q o p:j : npl,lgs
of canonical variables {angular momenta and conjugate angles). Such gn }nterl?rlcjld 105116111S
been improved recently by resorting to multidimensional WKB theory for integrabie sy,

: ot 41
and geometric quantization methods.

A.2 The Racah hypergeometric polynomial

denoted by pFy, is defined on p real or complex

he generalized hypergeometric series, !
e or complex denominator parameters b1, ba, ...y by

numerator parameters a1, g, ..« tp; ¢ real
and a single variable z by

SR I 1 A (1)
qu N — (bl)n v (bp)ﬂ n!
bl o bq =0 L

where (a), = ala+1){a+2)- (a-+n—1) denotes a rising factorial with () = 1. I.f onelof

the nume;}ator parameter is a negative integer, as actually happens in the following formula,
i i : (on i lynomial in z.

the series terminates and the function is a po - “ o

The key expression for relating the 6 symbol to hypergeometric functions is given by .the;

well-known Racah sum rule {see e.g., Ref. 2 topic 11 and Ref. 39, Ch. 9 also for ’r:he 011g111a,f

references). The final form of the so-called Racah polynomial can be recagted in terms o

the 4F3 hypergeometric function evaluated at z = 1 according to

{a b d} = A(abe) Alede) Alacf) Albdf) (—)* (Br -+ 1)!

cfe
a1—f; az—H  as—f 054“1.’31.1)
4 (mﬁl—i PPyl Bu—fi 1

) (16)
) (B — Bu)N(Bs — Bl — a (B — a2)l(B1 — Bs)!(B1 — cvg)!

where
B = min(a+b+c+d;a+d+e+f-,b+c+e+f)

and the parameters fq, 3 are identified in either way 'W'lth the pair rema}ining ilr11D th.(j1 ;;Elfi};
(a+btect+dia+dtet fib+ct+e+ f) after deleting B1. The fou%* a’s mteg ;_} euified
with any permutation of (@ +b+e;c+ d+e atect fib+d+ f) Finally the A-la
front of 4Fl are defined, for any triad (abc) as
(a-+b—c)la- b+c)!(—a+b+c)$}1/2 .

(a+b+ec+1)!
Yuch a seemly complicated notation 8 indeed-the most convenient for the purpose of listing
further interesting properties of the Wigner 64 symbol.

Aa) = |
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e The Racah polynomial is placed at the top of the Askey hierarchy including all of
hypergeometric orthogonal polynomials of one (discrete or continuous) variable.4?
Most commonly encountered families of special functions in quantum mechanics
are obtained from the Racah polynomial by applying suitable limiting procedures
as reviewed in.*® Such an unified scheme provides in a straightforward way thc;
algebraic defining relations of the Wigner 65 symbol viewed as an orshogonal poly-
nomial of one discrete variable, ¢fr. {16). By resorting to standard notation from
the quantum theory of angular momentum, the defining relations are:
the Biedenharn-Elliott identity (R =a-+b+c+d+e-+f+p+g+7)

sormesn ()

- g

the orthogonality relation (4 is the Kronecker delta)

Ten {H -ty ®

@

o Given the relation (16), the unexpected new symmetry of the 65 symbol discovered
by Regge™ (see also'®%) is recognized as a set of permutations on the parameters
o, A that leaves 4Fy invariant. Combining the Regge symmetry and the classical
tetrahedral ones, one get a total number of 144 algebraic symmetries for the 6ji
Implications of Regge symmetry on the the study of the geometry of the quan-
tum tetrahedron and its semiclassical Hamiltonian dynamics have been extensivel
addressed in. 4548 Y

e The Askey hierarchy of orthogonal polynomials can be extended to a g-hierarchy,*?
on the top of which the q-4F5 polynomial stands. Recall that when dealing Wi:th
quantum invariants of knots and 3-manifolds formulated in the framework of unitary
quantum field theory, the deformation parameter g must be a complex root of unity,
the case g = 1 being considered as the trivial one. We refer t0*"*® for accounts 01{
the theory of q-special functions and g-tensor algebras.
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